CAA2010

Fusion of Cultures

Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, April 2010

Edited by

F. Contreras
M. Farjas
F. J. Melero

BAR International Series 2494
2013
Table of Contents

Preface

3D INFORMATION SYSTEMS: DOCUMENTING THE PAST

Itziar Korosko, Óscar Muñoz
12 Years of Archaeological Data Digital Registry at the Santa Maria Cathedral
of Vitoria-Gasteiz (1997-2009) .. 1

Geoff Avern
Discourse on the Use of a 3D Model as a Record of Excavation.. 9

William Limb, Angela Payne, Snow Winters, Adam Barnes, Jackson Catherm
Approaching 3D Digital Heritage Data from a Multi-technology, Lifecycle Perspective........ 15

Piero Giletto, Roberto Parenti, Andrea Vecchi
An Integrated System for the Study and Management of Historical Buildings 23

Daniel Schubmann
ELKowsmGIS: A New Program for the Documentation of Archaeological Sites [31]

Pilar Diarte, María Sebastián, Antonella Guidazzoli, Francesca Delli, Tiziano Diamanti
Landscape and Virtual Archaeology: VisArq 1.0.. 39

Enrique Cerrillo-Cuenca, José Juan Sanjose
Mapping and Interpreting Vanished Archaeological Features Using Historical Aerial
Photogrammes and Digital Photogrammetry... 43

3D MODELLING AND VIRTUAL RECONSTRUCTIONS

Costas Papadopoulos, Yannis Sakellarakis
Virtual Windows to the Past: Reconstructing the ‘Ceramics Workshop’ at Zominthos, Crete ... 47

Andrés Bustoillo, Laura Martinez, Mario Alguero, Lena Iglesias
The Church of the Charterhouse of Miraflores in Burgos: Virtual Reconstruction of Artistic Imagery.. 55

Sofia Pescarini, Eva Pietroni, Daniele Ferradi
A Procedural Approach to the Modeling of Urban Historical Contexts................................ 63

Ethan Gruber, John Dobbins
Illuminating Historical Architecture: The House of the Drinking Contest at Antioch 71

John Dobbins, Ethan Gruber
Modeling Hypotheses in Pompeian Archaeology: The House of the Faun......................... 77

Zhang Jiaying, Zhou Mingjuan
Improved Gamma Tom Tracing Technique Using Height Field Profile Tracing [85]

3D SCANNING CASE STUDIES

Alfonso Ippolito, Francesco Bortogna, Antonio Pizzo
Digital Mediation from Discrete Model to Archaeological Model: the Janus Arch 91

Carlo Inglese, Antonio Pizzo, Luca Senatore
Digital Mediation in the Transition from a Discrete Model to Large-scale Archaeological Survey: Survey of the Archaeological Site of Merida .. 99

Klaus Hanke, Thomas Stollner, Kristof Kovács, Michael Moser
Combination of Different Surveying Methods for Archaeological Documentation:
the Case Study of the Bronze Age Wooden Chest from Mitterberg 107

Editors’ Note: *If an page number means “available only on the digital version of the proceedings”*
Table of Contents

András Patay-Horváth
Virtual 3D Reconstruction of the East Pediment of the Temple of Zeus at Olympia. A Mid-term Report......[113]

Ursula Qutameh, Robert Kolasek, Bernd Breunigmann, Christiane Barthow
3-Dimensional Documentation of the Hadrian’s Temple in Ephesus/Turkey...[119]

Thomas Kersten, Maren Lindstaedt, Klaus Mechelke, Burkhard Vogt
Terrestrial Laser Scanning for the Documentation of Archaeological Objects and Sites on Easter Island......[125]

Abel Varela, Miguel Angel Bru, Ma José Iniesta-Alba, Ricardo Izquierdo, Iván Sánchez, Pablo Carballo
A Study of Defensive Architecture in the al-Andalus City of Vascos from a Topographic Survey with Laser Scanner... 133

AGENT-BASED SOCIAL SIMULATION IN ARCHAEOLOGY

Juan Antonio Barceló, Jose A. Cuesta, Florencia del Castillo, Jose Manuel Galán, Laura Mameli, Francisco J. Miguel, Jose I. Santos, Xavier Vila
Simulating Prehistoric Ethnicity. The Case of Patagonian Hunter-gatherers... 137

Panagiotis Kontolatimos
Late Bronze Age Mediterranean Urbanism and Depth Map Software: The Cases of Ugarit (Syria) and Enkomi (Cyprus).. 145

Xavier Rubió, José M. Cela
Large-scale Agent-based Simulation in Archaeology: an Approach using High-performance Computing.... 153

David de la Cruz, Jordi Estévez, Pablo Noriega, Manuela Pérez, Raquel Piñé, Jordi Sabater-Mir, Asunción Vila, Daniel Villatoro
Norms in H-F-G Societies. Grounds for Agent-based Social Simulation... 161

ANALYTICAL GIS

Mariza Kornam, Gary Lock
Dynamic Models to Reconstruct Ancient Landscapes.. 169

Athos Agapitos, Maria Iacovou, Apostolos Sarris
A Spatial Analysis of the Bronze Age Sites of the Region of Paphos in Southwest Cyprus with the Use of Geographical Information Systems... 177

Ignacio Fiz, Diana Gorostidi, Jordi López, Maria Prevosti, Josep Abela
In Consectu Prope Totius Urbis: an Application of Different Visual Methods at the ager Tarraconensis Landscape... 185

Helene Simoni
Archaeological Evaluation of Ground Disturbance Sites in Modern Greek Cities... 193

Lucile Pillot, Laure Saligny, Clément Moreau, Remi Martineau, Boris Vannière, Marena Gabillot, Isabelle Jouffroy-Bapiaci
Observations of Land Use during the Neolithic Using Exploratory Spatial Data Analysis: Contributions and Limitations... 201

Antonio Pedro Dias da Fonseca
GIS Use in Open-Air Rock Art Conservation: the Case of the Côa Valley, Portugal... 209

Philip Verhagen, Lucian Drăguț
Discovering the Dutch Mountains: an Experiment with Automated Landform Classification for Purposes of Archaeological Predictive Mapping.. 213

Xavier Rodier, Pablo Cézar, Anne Moreau
Using GIS in French Rescue Archaeology. The Choice of Inrap: a Tool for Research at the Scale of Excavation... 217
ARCHAEOLOGICAL ARCHITECTURE

César González - Pérez, Rebeca Blanco-Roiz, Cristina Matos, Idoia Cumbrera
A Formal Language for the Description of Historical Architectural Elements .. 221

Eleftheria Faliou, David J. Knight
Mapping the Senses: Perceptual and Social Aspects of Late Antique Liturgy in San Vitale, Ravenna 229

Lola Vico
“Virtual Restoration” from an Architectonic and Constructive Interpretation of Villa of Livia 237

DATABASES AND INFORMATION MANAGEMENT

Alfonso Frugius, Antonio Menchero, Antonio Uriarte, Juan Vicent, Susana Consuegra, Pedro Díaz del Río,
Nuria Castejón, Cristina Criado, Enrique Capdevila, Marta Capote
Spatial Data Infrastructures and Archaeological Excavation Data: SILEX, the SDI of the Neolithic
Flint Mine of Casa Montero (Madrid, Spain) ... 241

Franco Niccolucci, Achille Fulcetti, Melissa Sommes, Serin Hermou, Karyn Nye
Ontologies and Semantic Tools for the Management of Full-text Archaeological Documentation,
Assessments from the Hala Sultan Tekke Case-study ... 247

Cristian Farli, Anna Margherita Jasink
DBAS Web Portal: on-line Databases on Aegean Subjects ... 251

Maria José Almeida, Alexandre Mota, Fernando Cabral
The Integrated Archaeological Management System in Cascais, (Portugal):
From Management to Public Access .. 255

FROM NEW GENERATIONS OF WEB SERVICES TO ARCHAEOLOGICAL KNOWLEDGE

Pascale Chevalier, Eric Leclercq, Arnaud Millereux, Christian Sapin, Marinez Savonnet
WikiBridge: a Semantic Wiki for Archaeological Applications ... 259

Valentine Roaux, Nathalie Aussena-Gilles
Knowledge Bases and Query Tools for a Better Cumulative in the Field of Archaeology:
The Arkeotek Project ... 267

GIS APPLICATION

Patrick Z. Dresch
Assessing Changes in Palaeo-Coastal Morphology Using 3D Surface Modelling .. 273

José Ángel Martínez, Antonio Uriarte, Victorino Mayoral, Juan Luis Pecharroman
Geospatial Characterization of Archaeological Sites in La Serena Region (Badajoz) by
Direct Methods (DGPS): Capturing and Analyzing Data .. 279

Marisa Ruiz-Gálvez, Yousef Bokbot, Hipólito Collado, Mohssine ElGraoui, Mercedes Farjas, Eduardo Galán, Abdellah El Lemjidi, Carlos Nisto, Pablo de la Presa, Jorge de Torres, José M. Señorán
Rock Art, Landscape and Prehistoric Settlement at the High Atlas (Morocco) .. 287

Ardis Mit, Eglantina Segami
Ongoing Development of the National Sites and Monuments Recording System in Albania 291

Giacomo Landeschi, Marcello Carrozzi
A 3D Model for Detecting and Communicating the Archaeological Risk .. 295

Silvia Polla, Gerd Grafhoff, Elisabeth Rinner
Explanatory Models in Archaeology: Are Least Cost Paths the Way to Go? .. 299

Iván Sánchez, Miguel Ángel Bru, María José Inkusto-Alba, Ricardo Izquierdo, Pablo Carballo, Abel Vareda
Implementation of GIS Techniques for the Management and Graphic Representation of the al-Andalus
City of Vasces (Navalmoral de Toro) .. 303

Athos Agapitou, Andreas Georgopoulos, Charalampos Ioannidis, Marinios Ioannides
A Digital Atlas for the Byzantine and Post Byzantine Churches of Troodos Region (Central Cyprus) 307

Editors' Note: / / page number means “Available only in the digital version of the proceedings”
Table of Contents

IMAGE PROCESSING

Christian H"{a}r"{a}, Enrico Kleinl, Guido Brunnett
Vectorizing Hand-Drawn Vessel Profiles with Active Contours ... 311

Francisco Javier Molina, Javier Mora-Merchan, Julio Barbancho, Carlos Le"{o}n
A New CBIR Technology to Help Reassembling Moorish Ornamental Carvings .. 319

Diego Jiménez-Badilla, Salvador Ruiz-Correa, Wilfred García-Alfaro
Developing a Recognition System for the Retrieval of Archaeological 3D Models 325

Angelika Garz, Melanie Gau, Robert Sablatnig
Text Detection in Ancient Manuscripts Using Orientation- and Frequency-Signatures of the Texture333

INTEGRATING TECHNOLOGIES FOR ARCHAEOLOGICAL APPLICATIONS

Miguel Ángel Bon Castro, Maria José Iniesto-Alba, Ricardo Izquierdo, Iván Sánchez Valiño, Abel Varela Abelleira, Jorge de Juan Ares, Pablo Carballo Cruz;
The Management of Archaeological Information at the Site of Vaseos (Navalmorolejo, Toledo): Approach, Data Integration and Representation in an Intra- and Intersite Model .. 337

Paola Di Giuseppantonio Di Franco, Fabrizio Gateazzi
Western Han Dynasty Mural Tombs: from the Use of Integrated Technologies to the Cybermap345

Lola Vico, Valentino Vassallo
Methodologies and Techniques for the Reconstruction of Ancient Architectures ... 353

ISSUES IN LEAST-COST ANALYSIS

Dimitrij Mlcek
Time Geography, GIS and Archaeology ... 359

Irmena Hercog, Aiden Vépez
Least-Cost Kernel Density Estimation and Interpolation-Based Density Analysis Applied to Survey Data 367

Irmena Hercog
Theory and Practice of Cost Functions .. 375

Philip Verhagen
On the Road to Nowhere? Least Cost Paths, Accessibility and the Predictive Modelling Perspective383

NEW TECHNOLOGIES IN ARCHAEOLOGICAL MUSEUMS

Per Stenborg, Jonas Tornberg, Johan Ling, Marita Söderström, Christopher Sevara, Liane Thuander
Piloting Time-Tours: Experiences from the Development and Implementation of a Computer Based Exhibition in West Sweden ... 391

Genevieve Lucet, Araceli Casas, Iris Hernández
Multilayered Virtual Reality System for the Comparative Study of Measuring and Representation Methods of an Archaeological Site ...[397]

Eliane Massung, Kirsten Caton
Location-based Interpretation at Archaeological and Heritage Sites: Visitor Reception to New Media Tours ... 403

Robyn Gillam, Christopher Innes, Jeffrey Jacobson
Performance and Ritual in the Virtual Egyptian Temple ...[407]

Mieko Matsumoto, Expen Uleberg
National Web Portals for the Norwegian University Museums .. 411

Rimvydas Laničkas
Virtual Museum between Web Page and Second Life ...[415]

Angeliki Chrysanthi, Graeme P. Earl
Management of Archaeological Walks and Emerging Technologies: Building Up a Framework[419]

Editor's Note: 1 at page number means: “Available only in the digital version of the proceedings.”
NEW TECHNOLOGIES IN ARCHAEOLOGY HIGHER EDUCATION

Kari Uotila, Isto Huvila, Jari-Pekka Pauliakosalo
Learning, Access and Mobility in Cultural Heritage Education: Developments, Lessons and Findings from the Project.. 423

Maurice Murphy, Lloyd Scott
Historic Building Information Modelling A Virtual Learning Tool.. [427]

Alexei Tranch, Jackson Coasthen, Adam Barnes
Recreating Cusco in Three Dimensions.. [431]

OPEN SOURCE IN ARCHAEOLOGY

Stefano Costa
Free and Open Source Software in Archaeological Research Processes: an Application to the Study of African Red Slip Ware in Northern Italy.. 435

Stefano Costa, Luca Bianconi, Giovanni Luca Annibale Pesce
Open Source Software in Archaeology: Beyond Passive Users.. 443

Alessandro Bezzu, Luca Bezzu, Rupert Gietl, Sandra Heinsch, Walter Künner, Giuseppe Naponiello
Aranus Excavations and Field School. Experiences in Using, Developing, Teaching and Sharing Free/Libre and Open Source Software.. 449

Michael Olsen, Kevin Ponto, Jason Kinshall, Maurizio Seracini, Falko Kuester
2D Open-source Editing Techniques for 3D Laser Scans.. 455

Nicolò Dell’Unto, Mattias Wallergård, Matteo Dellepiane, Stefan Lindgren, Joakim Eriksson, Bodil Petersson, Roeland Paardekooper
An Experiment of Integrated Technologies in Digital Archaeology: Creation of New Pipelines to Increase the Perception of Archaeological Data.. [463]

QUANTITATIVE METHODS IN ARCHAEOLOGY

Rob Stepham, Kevin Carlberg
Gappy Data Reconstruction and Applications in Archaeology.. 469

Rimvydas Laužikas
Information Entropy for Archaeological Research.. [477]

Maria Joana Gabriela, Jordi Rosell, Isabel Cáceres

Vincent Monn, Erik Drenth
Continuity and Change: a Study on the Computer-aided Classification of Late Neolithic and Early Bronze Age Pottery from the Netherlands, Part Two: The Application of Dynamic Simulations.. 487

Bill Wilcox
Archaeological Predictive Modelling of Late Anglo-Saxon Settlement in East Anglia and Norfolk, England.[491]

Alessandro Di Ludovico, Sergio Caimi, Giovanni Pieri
Comparative Use of Mathematical Models in an Investigation on Mesopotamian Cylinder Seals.. [495]

RECORDING, INTERPRETATION AND EVALUATION OF HIGH DEFINITION 3D SURFACE DATA

Michael Höldmoser, Sebastian Zonhanini, Martin Kampel, Mario Schlapke
Evaluation of Historical Coin 3D Models.. 499

Klaus Mechtelke, Mike Schnelle
Architectural Survey by Terrestrial Laserscanning – a New Method for Efficient Plan Creation.. 505

Paul Boon, Martine de Vries-Melein
Cylinder Seals Revealed.. [511]

Jose A. Barrera, Jose A. Benavides
3D Scanning, Low-cost Alternatives in Archaeology.. [519]
Table of Contents

REMOTE SENSING AND NON INTRUSIVE METHODS

Michael Mörner, Felix Riecher-Bauchebr, Geraldine Quénéhervé, Christine Hertle, Charles Svanane, Liane Giemsch, Heinrich Thieme, H.
Modelling the Spatial Distribution of Archaeological Sites in the Makuyuni Region, Tanzania.......................... 523

Apostolos Sarris, Michael Teichmann, Paraskevi Seferou, Eleni Kokinou
Investigation of the Urban-Suburban Center of Ancient Nikopolis (Greece) through the Employment of Geophysical Prospection Techniques..[531]

Nicolas Paillet, Rachael Optiz, Lauire Nunning, Kristof Ostir
The ModAgSpace Project: Lidar Data and Landscape Archaeology in Southern France................................. 539

Karsten Lambers, Thomas Reitmaier
Silvretta Historica: Satellite-assisted Archaeological Survey in an Alpine Environment............................... 543

SEMANTIC INFRASTRUCTURES IN ARCHAEOLOGY

Gerald Heibel, Klaus Hanke, Ingrid Hayek
Methodology for CIDOC CRM Based Data Integration with Spatial Data.. 547

Ceri Binding, Keith May, Renato Souza, Douglas Tedhope, Andreas Vlachidis
Semantic Technologies for Archaeology Resources: Results from the STAR Project.. 555

Leif Isaksson, Graeme Earl, Kirk Martinez, Nicholas Gibbins, Simon Keay
Interoperate with Whom? Archaeology, Formality and the Semantic Web.. 563

Yi Hong, Monica Salminki, Lin Foxhall, Alessandra Quercia
A Framework for Transforming Archaeological Databases to Linked Ontological Datasets............................ 569

Thomas Eckart, Reinhard Fôrtsch, Sebastian Kruse, Marco Böchler
Accessing, Visualizing and Annotating Geographical Information in Archaeology...[575]

Geoff Carver, Matthias Lang, Holger Törk
Recent Developments in the ArcheoInf Project – Towards an Ontology of Archaeology.....................................[581]

TAKING THE LONG VIEW: PUTTING SUSTAINABILITY AT THE HEART OF DATA CREATION

Keith Kintigh
Sustaining Database Semantics.. 585

Peter McKeague
Towards the Development of a Sustainable National Record: a View from Scotland..[591]

Jessica Trelogan, Adam Rabinowitz, María Esteva, Stephen Pipkin
What Do We Do with the Mess? Managing and Preserving Process History in Evolving Digital Archaeological Archives... 597

Editors' Note: J at page number means “Available only in the digital version of the proceedings.”
In Conspectu Prope Totius Urbis: an Application of Different Visual Methods at the ager Tarracensis Landscape

Fiz, L.¹, Gorostidi, D.², López, J.², Prevesti, M.², Abela, J.²

¹Universitat Rovira i Virgili (URV)
²Catalan Institute of Classical Archaeology (ICAC)

{fiz, dgorostidi, mprevesti, jlopez, jabela}@icac.cat

We present in this paper the results of the application of several visual methods on a group of locations, dated between VI and I centuries BC, of the ager Tarracensis (Tarragona, Spain) a hinterland of the roman colony of Tarraco. The difficulty in interpreting the diverse results in a combined way has been resolved by means of the use of statistical methods, such as Principal Components Analysis (PCA) and K-means clustering analysis. These methods have allowed us to carry out site classifications in function of the landscape's visual structure that contains them and of the visual relationships that could be given among them.

Keywords: Viewshed, Tarragona, Clustering, Principal Components Analysis, Prominence, GIS.

1. Introduction

David Wheatley and Mark Gillings defined visibility as "cognitive/perceptual acts that served to not only inform, structure and organise the location and form of cultural features, but also to choreograph practice within and around them" (WHEATLEY and GILLINGS, 2002a:3).

These completely immaterial facts are however part of a mental process that explains a great part of the social underlying behavior of an individual and inside the group where he is integrated. Those are sensations, feelings and acts that remain subliminally, and that don't leave behind an archaeological print. But without them we cannot explain social contexts, as the corresponding to the last century of the roman republic, unless we appeal to the historical sources. For example we know from Cicero the interest of the patrician class to lift their houses in the highest and most visible places of the Palatine's hill in Rome. This way, they competed to occupy the highest place, like a form of highlighting their gens above the other ones. It is known the expression of this fact that Cicero states: in conspectu prope totius urbis (De domo sua 100), that is to say "exposed in view of almost the whole city". In the countryside the villae play a similar role to that of the domus, as they are a cultural symbol which expresses the individual's mastery over the rest. It is also significant that both the architecture and the conscious use of the topography were used in the design, prominence and organization of spaces and residential buildings. These uses responded to the need to identify the place at the same time as a residence, a management center, and specially as an evidence of the owner's presence in the territory, highlighting his property rights, wealth and social position.

In this work we analyse the visual structure in iberian and republican times of the ager Tarracensis landscape (Tarragona, Spain). We have studied diverse aspects of the territorial visual structure of the implied locations.

In particular we have studied the roman rural settlements and the villae in order to extrapolate what happened in Rome in the last century of the Republic to the rural landscape of the roman colony of Tarraco. We would see if the local elites followed the same pattern. That is to say, did they look for a predominant location visually with regard to the rest, in a kind of visual hierarchy? Evidently a similar study must lean on the archaeological, architectural, sculptural and epigraphic data that appeared in these villae subjects of study.

The "Estudi del paisatge arqueològic antic de l'ager Tarracensis (a la dreta del riu Francollí)" project has been carried out by the "Institut Català d’Arqueologia Clàssica", ICAC (Catalan Institute of Classical Archaeology), among the years 2005 and 2009. As a wide scope project it has been implemented in...
collaboration with diverse institutions that work together in this space. This project is included in the "Landscape, Settlement and Territorial Archaeology" research line of ICAC. It is also part of the project "Forma Orbis Romani" directed by the Academic International Union, represented in Catalonia by the Institut d'Estudis Catalans (IEC).

Due to the great extension of the *ager Tarraconensis*, we initially decided to study the area located in the right margin of the river Francoli, with an extension of 345 km². The project proposed an integral study of the territory in the antiquity and its evolution, from 500 BC to 712 AD. Therefore, it is a pluridisciplinary research that integrates different topics: settlements; territorial articulation and their communication routes, and different palaeoenvironmental and geological approaches. This diversity of specialties has gathered the work of 28 national and international researchers. The project, directed by Drs. Marta Prevosti and Josep Guitart, has been from the beginning outlined as pluridisciplinary and diaconal approach.

2. Quantifying Visibility

Intervisibility, prominence, analysis of superficial visible extensions are characteristic methods of a quantitative focus. All of them use mathematical and statistical methods with the intention of generating explanatory models.

Diverse methods evaluate the visibility. The first works correspond to Fraser (FRASER, 1983) who analyzed the intervisibility between two locations using the Line of Sight (LOS). We know as viewshed the binary map where each cell indicates the result of a LOS taken from an observation point. The Cumulative Viewshed is the union of the calculations of individual visibility taken from each observation point. Renfrew (RENFREW, 1979: 15, figures 5) presented the results of Cumulative Viewshed indicating for each observer how many times it was seen by the group of observer points. Wheatley computed the method (WHEATLEY, 1995) and applied it to the study of the visual relationships among the neolithic barrows in Salisbury Plain. Another of the applications has been the definition of sacred landscapes or the demonstration of the possible relevance of certain monuments or prehistoric sanctuaries (GARCIA SANJUAN, WHEATLEY, 2008).

The visual structure of the landscape, or Total viewshed, was defined by Llobera. It can be defined as the visibility extended to all the cells of the studied territory where all are observables and observed. In other words this method defines a landscape description based on its inherent pattern of visibility (LLOBERA et al., 2004)

Wheatley and Gillings (WHEATLEY and GILLINGS, 2002a) provided methods to define the visual panoramic obtained from a communication road. They also contributed examples of how to correct the visual quality in function of the distance. They made it on the basis of the works of Tadahiko Higouchi (HIGOUCHI, 1988: 9-23) who among other aspects defined the thresholds of change in the visual quality of the landscape's elements. Other calculations are guided in the comparison of the topographical preponderance among establishments, monuments and places with a symbolic strong importance. This way the index of topographical preponderance is expressed as a location that stands out above the rest (GARCIA SANJUAN, 2005: 220). LLOBERA (2001) defined the prominence as a function of the difference in altitude between an individual element and the environment that it surrounds it. The prominence also informs us about the morphology of the location.

3. Methodology

3.1. Integrating SGBD & GIS

In order to register and manage all the data obtained in the project, we created a Database using the DBMS Microsoft Access. In this database we included the data registered by Simon Key and Millet on their land surveyors project's (CARRETÉ et al., 1995). This project was developed between the end of 1980's and the beginning of the 1990's.

We also included and reviewed all the sites of this area registered at the database of the "Departamento de Patrimonio de la Generalitat de Catalunya" (Genaralitat de Catalunya heritage department). The new sites found in land surveyor works were also recorded in the database.

All this data was integrated in a GIS system, ARCGIS 9.3

3.2. Visual Methods

We have applied well-known methods to quantify and analyze the visibility pattern and we have also built some new functions.

GIS doesn't generally provide methods like those mentioned. Some of them may be programmed taking as a basis the function of accumulated visibility. For that reason some of the following functions have been implemented in Phyton, the native programming language of ARCGIS 9.3:

- Llobera's routine, which calculates the prominence starting from a group of points and in a certain radio.

- Visual Impact. Routine that quantifies the number of cells that observe each locations subjected to study.

- Visibility from the communication roads. Routine developed by David Wheatley. It calculates the visibility from the vertexes that are part of a line, in this case a communication road.
-Visual net. On the basis of the calculation of the simple visibility for a group of locations, a graphic net is built. We can see which are the visual interconnections among the observer points.

These functions were applied on data corresponding to locations of different chronologies, using a raster of 30 meters/pixel bought to the Cartographic Catalan Institute (ICC). The studied area measures 58x55 Km², taking into account WHEATLEY and GILLINGS (2002b: 209) advises about the problems in choosing an adjusted workspace for the locations.

3.3. Statistical Methods

Using the data obtained in the different visual studies we implemented diverse statistical methods. The methods we used are the independent sample t test, the Principal Components Analysis (PCA) and the K-means Cluster analysis.

Independent sample t test is one of the statistical methods that allows the comparison among independent groups through a normal dependent variable (MORGAN et al., 2004: 135-138). A sample will be significant if the test value is smaller than 0.05.

The Exploratory Factors Analysis (EFA) and the Principal Components Analysis (PCA) are the methods used by the researchers to represent a great number of relationships among variables in a more simplified way (LEECH et al., 2005: 75). The first conceptual difference between the two methods is that EFA postulates that a small group of non observed or latent variables exist, which are hidden between the observed variables and the measures. On the other hand, PCA obtains a reduced group of variables that represents a great part of the information contained in the total of the used variables. PCA method looks for the creation of factors that show a group of N variables in a space of representation of smaller dimension R. These R factors or components cannot be observed empirically (SHENNAN, 2004: 265-302).

K-means clustering (MACQUEEN, 1967) is one of the learning algorithms without simpler supervision that solves the well-known clustering problem (SHENNAN, 2004: 216-264; CONNOLLY and LAKE, 2006: 162-173).

In order to see if it is possible to define diverse groups of visual behaviour, PCA has been applied on five variables: Cumulative Viewsheed, Visual Impact, Prominence at 500 meters, Prominence at 3000 meters, Prominence at 5000 meters. This procedure reduced the five variables in two components whose values have been analyzed by k-means Clustering. This technique
has been used to determine, with more simplicity and precision, groups of similar visual behavior.

4. Results

4.1. Visual Methods

Iberian period VI-III century BC

For this chronological period we know up to 27 sites. Unfortunately the archaeological information that we have is scarce and the structures are not well-known.

Our study began applying a 500 meters prominence analysis, detecting 5 sites with more than 80% prominence. These were Punta Coroneta; Puig Cabrera; Manous; Punta de la Cellera and Puig de Santa Anna (figure 1).

Then the other analyses gave similar results and also highlighted the five mentioned locations. All of them seemed to have similar visual and topographical characteristics: highly prominent and very visible from the rest of the territory. This fact could be related to control centers. Particularly we will point out three sites that obtained the best results: Puig de Santa Anna, Puig Cabrera and Manous (figure 2).

A different functionality could be detected observing the results of the cumulative viewed analys. Most part of the vision of Puig Cabrera and Manous is long distance vision (more than 10 Km) while most part of the vision of Puig de Santa Anna has a distance of less than 10 Km. That is to say, first both would exercise a regional control of the territory as well as of the natural communication roads, while Puig de Santa Anna would exercise as a more local control centre over the nearest sites. On the other hand we could affirm that, in this chronological period, Kesse/Tarraco is not the best perceived. Taking into account the visual classification it is a second range site, below Puig de Santa Anna.

II Century BC

The beginning of this period is characterized by the last years of the second Punic War and the construction, near Kesse, of a military roman camp between the 218 and the 206 BC. Its functionality varies, going from winter barracks, headquarters of the allied assembly to warehouse for the supplies. Later on, with the creation of the Citerior and Ulterior provinciae in 197 aC, their singularity will be developed by adding an italic population formed by publicans and negotiators. These will boost an economic and a commercial growth due to oversea trades with Italy (RUIZ OF ARBULO, 2007: 571-572).

During II Century BC we can observe an increase of the number of sites (47). We also detected a new sites convivence with iberian sites. This last were uninhabited along this century. This iberian villages were Puig de Santa Anna and Punta de la Cellera.

But one of the most important changes of the ager Terracensoris settlement is that the majority of the new sites were near of Kesse/Tarraco.
Evidently the results for the iberian sites are related to the visual landscape structure and are similar to the previous period. Only changing the cumulative viewshed analysis. Results show us that the importance of these iberian sites have changed for the rest of the settlements. But it is interesting to contrast this results with the prominence of 3 new sites: Bosc de Quec, Sant Llorenç and el Vinyet. These new sites had similar visual results to Puig de Santa Anna (figure 3).

Initially these sites were classified as rural structures. This resemblance leads us to doubt of their initial classification, as that those may be control centers of the territory.

Also the pathviewshed analysis detected that Puig de Santa Anna was still the place best viewshed of the landscape, but one of the three new sites, Bosc del Quec, has similar results. Could a rural site have a 40% of positive vision from the communication route?

I Century BC

In this chronological period we detected another increase in the number of sites (62). These new sites settled in uninhabited areas in the previous century. In this century, the iberian sites end their activity and Kesse, now Tarraco, had an outstanding and ambitious urban development (around 100 BC) and a higher
juridical status, becoming a roman colony between 48-44 BC (RUIZ DE ARBULO, 2002).

The prominence analysis provide similar results to those of the II century BC and the cumulative viewedsh analysis show us that Tarraco was the place more viewedsh (figure 3) from the rest of sites. Only Bosc de Qüec and el Vinyet have larger values. It coincides then with the conversion of Tarraco, into an administrative center of the Tarraconensis province.

4.2. Statistical results

The studies of visibility carried out on the five variables allow to identify groups in which we can classify the locations in function of the attention or the prominence that its location provokes on other sites. However, it is difficult to extract general conclusions from the studied visual behaviours. Applying PCA has been much easier than analysing all the individual results. The application of the k-means clustering allowed us to define four possible groups that maintain part of the structure of the previous period.

Iberian period

If we combine in a scatter dot the two components of the PCA & K-means Clustering application it allows us to observe one group (5.1) that shows the highest levels of prominence, cumulative viewedsh and visual impact. The sites that integrate this cluster are: Manous, Els Garrafolats, Puig de Santa Anna, Punta de la Cella and Punta Corometa. These sites were located in more prominent and visible places in the landscape than the other sites and had a visual control of the territory.

Remember that Kesse/Tarraco (5.3) became a provincial capital of the Roman Empire. But it belongs to a cluster that have no significative or a half prominence, and other visual components.

We want to emphasize La Mussara and la Cova de la Moneda (5.2). These sites were located in the most prominent places, but they can’t be viewed from the rest of the landscape. In other words: “You know where there it is, but you can’t see it”. These sites have been dated to the Bronze Age.

Our hypothesis is that these sites could have been symbolic and religious places. The symbolic importance of a topographical prominent element has already been studied in other cases like, for example, the visual relationship between the dolmen of Menga the Peña de los Enamorados near the cave sanctuary of Matacabras (Antequera, Spain).

II Century BC

PCA results show us that one group is integrated by the last iberian sites: Puig de Santa Anna and Punta de la Cella. New sites as El Bosc del Qüec, El Vinyet and Sant Llorenç have a similar prominence and visibility patterns (6.1).

We have several explanations for these results: those three sites could be local elite’s rural places, that remained along the early Roman Empire although we don’t know if they were roman villae. Another possibility is that they could have been roman territorial control centres. Nowadays we don’t have archaeological explanations that could assert these hypothesis.

Also, the PCA results are interesting with regard to Tarraco/K esse. The visual and prominence patterns are the same as those related to iberian times. This result doesn’t surprise us, because an important part of PCA is the prominent data related to the site’s topographical context. The cluster that contains it (6.2) has a non significative prominence and visibility pattern. We could even say that Tarraco/Kesse is an outlier inside its group. The reason is that the Cumulative viewedsh proved that Tarraco/Kesse had similar values than Puig de Santa Anna. On the other hand, the difference on the PCA is the increment of positive visuals between Tarraco/Kesse and the other sites.

Between PCA of the Iberian period and that of the 2nd century BC, we can observe a change in the territorial visual pattern distribution. However one of the groups (figures 5.1 and 6.1) presents similarities related with the iberian settlements that subsist during this century. This iberian settlements were situated in places with the best values of cumulative viewedsh, visual impact and prominence at all distances.

1 Century BC

In the 1st Century BC the data obtained by applying all the methods doesn’t seem to indicate a variation of the pattern of the 2nd century BC. It is certain that the iberian settlements have been abandoned (figures 6.1, 7.1) and an increment has taken place in the number of habitats with lower visual values (figure 6.4 & 7.4), but the structure of the visual landscape is apparently the same as the previous period. The group 7.1 persists even having the iberian settlements disappeared. It is also interesting to observe how Kessea/Tarraco has increased its visual pattern in the second group along the three studied periods and how it seems an outlier inside its group during the 2nd and 1rst centuries BC.

Taking as a starting point the results of PCA we wanted to check if a significant different exists in the 2nd century BC between those rural locations that later on, in the end of the Republic era and in the beginnings of the early Empire, will be transformed in villae and those that will maintain its character of rural establishments. With 95% of confidence and applying an independent sample T test we could say that the visual patterns were not significant in the election of the rural establishments that become villae later on (table 1).

However the application of the independent samples t test to the 1rst century BC provides a result different
from the preceding period. One of the components, with a 95% of confidence, is significant.

We also have seen how part of the visual structure of the Iberian territory remains during the Romanization (1.1,2,1,3.1). This indicates that the new occupant had to take advantage of part of the social previous dynamics allowing the permanency of locations or the creation of new ones with similar visual patterns.

The use of the cumulative viewshed in PCA allows to check which is the evolution of the visual pattern of an establishment. It is the case of Kessa/Tarraco, for which we see its transformation from an Iberian oppidum of second order to a provincial capital of the Roman Empire. The locations chosen as habitat appear to look for positions from where the new colony is contemplated.

But the main conclusion of our study, using PCA and then independent sample t test, confirm the possible imitation of Rome's social context described by Cicero.

Conclusions: in conspectu prope totius urbis

The individual analysis of the results obtained from diverse visual methods is too complex to extract general conclusions. PCA is a statistical tool of great utility to simplify and to visualize the visual patterns.

The new elites of the Colony of Tarraco began in the 1st century BC to look for those locations which physical prominence, symbolizing both, the political prominence and the clientelar relationships.

![Figure 5: PCA & k-means clustering results: Iberian settlements.](image)

![Figure 6: PCA & k-means clustering results: s II BC.](image)

![Figure 7: PCA & k-means clustering results: s I BC.](image)

Table 1: Independent sample t test results

<table>
<thead>
<tr>
<th>Component</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Component 2 s. II BC</td>
<td>0.491</td>
</tr>
<tr>
<td>2. Component 2 s. I BC</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Further studies

Further studies are needed to better understand and explain these results of analyzing the landscape's visual context: territorial definition using watersheds, the creation of visual nets to highlight means with a social deep cohesion and finally the application of other statistical methods (for example TweeStep Cluster analysis). We also need to apply these visual methods.
on other Mediterranean contexts in order to check if this visual pattern is similar in other areas.

References

